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A b s t r a c t  

Analytical expressions are derived relating the 
coefficients (, ,  fl, y, and 3) of the anharmonic 
one-particle-potential (OPP) model at a cubic site to the 
parameters of the higher cumulant expansion of the 
Debye-Waller factor• These expressions are used to 
derive the shape of the potential for the Al(4) site in the 
structure of VAI~0.42 from refinements of X-ray data 
measured at 100 K and room temperature, including 
third and fourth cumulant thermal parameters• Reason- 
able potentials are obtained at both temperatures• A 
negative value of fl indicates a softening of the potential 
in the ( 11 1) directions in contradiction to the results of 
previous pseudopotential calculations• A single set of 
potential parameters is obtained by least-squares fit to 
the cumulants at both temperatures• Deviations from 
the fit indicate a lower temperature dependence for the 
anharmonic terms than predicted by the OPP model• 
Corrections for quantum statistical effects are small at 
both temperatures• 

I n t r o d u c t i o n  

Aside from interest in anharmonic motion itself, an 
accurate description of the thermal motion is required 
in many applications which utilize precise diffraction 
data, such as measuring the electron density distri- 

* On leave from the Department of Physics, University of 
Helsinki, Helsinki 17, Finland. 

bution in crystals• When high-resolution measurements 
are present in the data set, the neglect of anharmonic 
motion will introduce additional noise in experimental 
density maps (see, for example, Stevens, 1979; Stevens, 
DeLucia & Coppens, 1980)• In addition, multipole 
modeling, which may be used to derive an estimate of 
the static electron distribution, requires a proper model 
of thermal smearing to avoid correlations with param- 
eters describing the electron distribution. 

Deviations from harmonic thermal motion may be 
accounted for in the temperature factor in several ways• 
A general expansion of the temperature factor in terms 
of higher cumulants has been introduced by Johnson 
(1969), 

i i 3 
T(h) = exp ~ c2~x" h~ hj + ~ {3~a:/J* h~ hi h,  

• 3! 

,4 } 
+ - -  {4)tciJkl h i h j  h k h I + ... (1 a) 

4! 

or equivalently, 

T(h) = exp (--27r 2 b ij a* a* h i h i 

47~ 3 
-- i - -  C ijk a~ a~. a~ hihih k 

3 

2rc----~43 diJk' a* a* a~ a'~ hihjhkh ' + . . . ) ,  (lb) 
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624 ANHARMONIC ONE-PARTICLE-POTENTIAL MODEL 

where summation of repeated indices is implied. Exten- 
sion of existing least-squares refinement programs to 
include higher cumulants is easily implemented. On the 
other hand, the behavior of the cufnulants as a function 
of temperature is not predicted by the model. 

An alternative for incorporation of anharmonic 
effects is based on the one-particle-potential (OPP) 
model. Each atom is assumed to vibrate independently 
in the average potential of its neighbors, given by 

V ( u )  = V 0 + I(lU2 n t- flu 1 U 2 U 3 + yU 4 

+ ~(U 4 -t- U 4 + U~ -3u4)5 (2) 

for a cubic site (Willis, 1969). In the high-temperature 
limit (T > 0o), the probability distribution is given by 

oO 
P(u) = exp[-V(u)/ks T]/ f exp[-V(u)/ks T] du (3) 

--OO 

and the temperature factor by 

oO 
T(h) = f P(u) exp(2nih.u) du. (4) 

--OO 

Assuming small deviations from a harmonic potential, 
and using e x _~ 1 + x when x is small, gives 

exp[-V(u)/k B TI = exp u 2 1 - i ~ u I u 2 u 3 
2k B T k s T 

Y 
_ _  _ _  U 4 

k . r  

6 (U'l + u~ + u~ 3-u4)] 
k~r  , J" (5) 

AI(1) 

A l ( 1 ) ' ~ f ~  ~ % 1 ~ 1 ( 1 )  

AI( 1 )~"" '~ I I~  ~AI(1) 

Fig. 1. Plot of the coordination polyhedron surrounding the AI(4) 
site in VAll0. Thermal ellipsoids are plotted at the 50% 
probability level (100 K). Four nearest-neighbor AI(3) atoms are 
located 3.1330(4) A (100 K) from the center in the (111) 
directions. Twelve AI(1) atoms are located only slightly farther 
I3.1484 (5)A] from the AI(4) site and arranged in groups of 
three capping each face of the tetrahedron formed by the Al(3) 
atoms. 

In this form, standard integration formulas may be 
used, yielding 

[ k s T  (27r)2 2] 
T(h) = N exp - h 

o a 2 

x 1 - k s T . a 2  2-'~3 

+ (kBT)21--- ~ 2-a~4 \ao} 

+i(ksT)E f l  (27r] 3 
- -  h I hEha 

\ao/ 

-- (k 8 T) 3 I14 

( 2 ~ / 4  ( - -~ )  
- ~ ( k ~  T) 3 - -  [h 4, + h~ + h~ 

\ao/ 
- 3 (h i  h~ + hi h~ + h~ h~)] 

+ ( k s T ) 3 ( 2---~ ] a o ] fl(-~a 5 ) 

(h ~, h~ + h~ h~ + h~ h~)] × (6) 
) 

(Moss, 1979; Mair, 1980). Thus, the OPP model 
predicts the behavior of each contribution to the 
anharmonic temperature factor as the temperature 
changes. Corrections to the OPP model due to the 
effects of quantum statistical averaging at low tempera- 
tures have been derived by Mair & Wilkins (1976) 
which are valid to about T > 0D/4. 

The validity of the OPP model may be tested by 
analyzing diffraction data collected at more than one 
temperature. Several such studies have been reported 
on simple solids. (See, for example, Moss, McMullan & 
Koetzle, 1980; McIntyre, Moss & Barnea, 1980; 
Harada, Suzuki & Hoshino, 1976; Cooper, Rouse & 
Fuess, 1973.) However, only small deviations from the 
harmonic potential have been observed in these studies, 
with the fourth-order terms often insignificant or not 
included. The extent to which the OPP model is valid 
for highly anharmonic motion has not been tested. 
Adequate descriptions for highly anharmonic motion 
will be required for many applications such as the 
analysis of torsional modes (Coppens, 1980), ionic 
conductors (Cava, Reidinger & Wuensch, 1977), and 
mode softening in anticipation of phase transitions. 

In the course of electron density studies of aluminum 
alloys containing transition metals (Kontio & Coppens, 
1981: Kontio, Stevens, Coppens, Brown, Dwight & 
Williams, 1980) we have collected high-resolution 
X-ray intensities from a single crystal of VAll0 at 100 
K and room temperature. Previous structural studies 
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(Brown, 1957; Ray & Smith, 1957) have shown that 
the structure contains a partially occupied aluminum 
site with 43m symmetry (Fig. 1). An anomalous 
low-temperature heat capacity has been interpreted by 
Caplin & Nicholson (1978) as arising from well defined 
local modes associated with a highly anharmonic 
potential for this site. An analysis of the thermal motion 
for the aluminum atom at this site is presented here. A 
detailed description of the electron density distribution 
will be presented elsewhere (Kontio, Stevens, Boehme 
& Coppens, 1982). 

Theory 

For a cubic 2,3m site, the allowed parameters in the 
cumulant expansion to fourth order are b 11, c 123, d 1'11, 
d'122 (International Tables for X-ray Crystallography, 
1974). These may be related to the parameters of the 
OPP model using the approximation 1 + x ~ e x for the 
OPP temperature factor and equating terms with the 
same h dependence. This gives a set of four equations, 

--27r 2 
--27C 2 (2)K'' -- b" 

; a 2 

! ,  

2a \ao] \ao] 
II°y 

x - an ~-~-a4 (7a) 

--4~3 --4~3 
(3)/~123 6i = ~ 6ic '23 ao 3 

3 3 

:i(kBT)2(2.---~] 3L (7b) 
\ao] a 3 

27r 4 27r 4 
(4)/(11,, _ d1,,1 ao  4 

3 3 

= - ( k  s T) 3 - -  + - (7e) 
\ao/ 5 

2R 4 2R 4 
(4)K1'22.6 = ~ 6 d  1122 ao 4 

3 3 

: ( k s T ) 3 ( 2 z r / 4  2(_~_X 6 ~ f12). 
\ a  o] 5 a 4 2a 5 

(709 
Solving (7b)-(7d) for fl, y, and 6 gives 

C123 
f l - -  - -  0; 3 (8a)  

(k B T) 2 

(k sa4T) 3 [ d'lll +402d1122 ksaT (C'23)2]~ ] 

(8b) 

t~ - -  ( k  B T )  3 2 4  + 

(8c) 

and substitution into (7a) yields a cubic equation for a, 

(d ' '1 '  + 2d 1122) bl'(ks T) 2 
a 3 -- a 2 (ks T) + a 

2(6'123) 2 (6"23) 2 

(k B T) 2 
- - - 0 ,  (8d) 
(c12~)2 

which may be solved in the usual manner. Thus, from a 
higher cumulant refinement, the parameters a, fl, ~, and 

of the one-particle potential may be determined. 
When T < 0 o, quantum statistical effects must be 

considered. For the aluminum [Al(4)] at the 43m site in 
VAII0, b 11 = 0.042 (2) A 2 at 100 K, so 0 g ___ 110 K and 
the high-temperature OPP model is no longer valid. 
According to Mair & Wilkins (1976), the quantum 
statistical OPP temperature factor, to fourth order in h, 
is given by 

T(h) = exp ~o h2/4 1 - b--~0 + 3~--~4 

127r12 h 2 ia (2~t3 
× - -  hi h2 h3 

\ ao ] 8-b3o \ ao ] 

+ 1 - ~ 0  + h 4 \ao] 

+ 16-b40 128 \a--oo ] 

× (h 4 + h 4 +  h 4 -  3h4)] 

where 

(9) 

a - ~ m a )  2, a - -  a~ ') 
ha) 

ma) {l ha) t 
b0 = - ~  tanh ~ k - - ~ ]  

5 y 
b = b 0 --  a22 --  c,2, c,2 -- - -  c(2 ') 

3 ha) 

- 1 - ~ _ _  ~ C ( 1 )  : C14 -~- 3.a24, C14 
ha) 

6 
= d14 - ~a24,' d,4 - - - d l  l', (10) 

ha) 

which .converges to (6) as the reduced temperature 
ha)/ksT goes to zero (high-temperature limit). The 
terms a~ '), ~-22"(2), a(2)24, e~ u, and c~ '~ = d~ 1~ are functions of 
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the reduced temperature  defined by Mair & Wilkins 
(1976). F rom the form of  this equation, it is obvious 
that  the set of  four quan tum statistical equations 
corresponding to (7a ) - (7d)  can no longer easily be 
solved in the same manner.  In this case, the values of  a, 
fl, 7, and ~ have been determined by a least-squares 
refinement using the values of  b 11, e 123, d 1111, and d 1122 
as observations.  

As formulated,  the values describing the potential  
should be independent  of  temperature,  except for some 
possible softening due to expansion of  the lattice as the 
temperature is increased (Willis, 1969). It is then 
straight forward to include cumulants  determined at 
more than one temperature as observations and refine a 
single set of  temperature- independent  ~, fl, Y, and 6 

Table 1. Summary of experimental parameters 

Space group Fd3m 
Z 16 
2(MoKa 0 0.70930 
Crystal shape Regular octahedron 

0.40 mm (maximum dimension) 
Data set I II 
Temperature 293 (1) K 100 (5) K 
Cell constant, a 0 14.502 (5) A 14.471 (2) A 
Nob s (total) 5768 6406 
Nob s (unique) 1249 1509 
(sin 0/2)ma x 1.22 A -~ 1.36 A -~ 
Rl* 2.05% 2.22% 

* R,  = Z ( ( I )  --  l l ) l Z  I r 

values. By weighting the least-squareS fit by co i = 1/a  z, 
the uncertainty in the values of  the cumulants  is 
properly accounted for. 

Experiment 

X-ray intensity measurements  were collected with an 
Enra f -Non ius  C A D - 4 F  diffractometer at the State 
University of  New York at Buffalo using a single 
crystal of  VA110 from the same batch as the crystal  in 
the original structure determination (Brown, 1957). 
Experimental  parameters  are listed in Table 1. Further  
details of  the experiment will be reported elsewhere 
(Kontio,  Stevens, Boehme & Coppens,  1982). 

Previous studies found occupancies of  0-1 (Brown, 
1957) and 0.5 (Ray & Smith, 1957) for the aluminum 

atom at the AI(4) site. Therefore, in this study the 
occupancy  of  the site was varied along with posit ional 
and anisotropic thermal parameters  of  all a toms (as 
allowed by symmetry) ,  yielding an occupancy  of  
0 .84 (1) at 100 K, which corresponds to a stoichio- 
metry of  VAl10.420(5). This is in good agreement with a 
composi t ion of  VAII0.4~ calculated from the analysis 
(15 .3% V, 84 .6% AI) reported by Brown (1957). To 
avoid bias from the valence electron distribution the 
thermal parameters  have been determined in refine- 
ments in which only high-order data (sin 0/2 > 
0.65 A -x) have been included. Results of  the various 
refinements are summarized in Table 2. A plot of  the 

Table 2. Least-squares refinement results 

T= 100K 
Sin 0/2 range (A -l) 0-0--1.36 0.65-1.36 0.65-I .36 0.65-1.36 
AI(4) at x = 0.375 

Occupancy 0.84 (1) 0.84 0.84 0.84 
b ~ (A 2) 0.0481 (9) 0.0495 (12) 0.0464 (10) 0.0417 (20) 
c 123 (A 3) 0.0049 (5) 0.0045 (2) 
dll l l  (/k4) - 0 . 0 0 3 6  (6) 
d1122 (,~4) 0.0011 (1) 

Nob s 1509 1314 1314 1314 
N v 17 16 17 19 
R (%) 3"00 3.02 2.89 2.78 
R~, (%) 4.15 3.76 3.57 3.42 
GOF 1.86 1.61 1.53 1.47 

T = 293 K 
Sin 0/2 range (A -I) 0.0-1.22 0.65-1.22 0.65-1.22 0.65-1-22 
AI(4) at x : 0.375 

Occupancy 0.85 (1) 0.85 0.85 0.85 
b ~1 (A 2) 0.0738 (12) 0.0929 (26) 0.0707 (15) 0.0547 (94) 
c 123 (A 3) 0.0104 (18) 0-0097 (7) 
d fIll (A 4) -0.0118 (3) 
d 1122 (A4) 0.0024 (5) 

Nob s 1059 859 859 859 
N v 17 16 17 19 
R(%) 3"85 4.76 4.68 4-64 
R,. (%) 4.04 3.86 3.67 3-58 
GOF 1.74 1.48 1.41 1.37 
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Fig. 2. Plot of the difference electron density distribution at 100 K 
in a plane defined by the AI(4), Al(3) and AI(1) positions and 
centered at the Al(4) site. Contours are plotted at 0.20 e A -3 
intervals, with zero and negative contours broken. (a) After 
refinement including second cumulant thermal parameters only. 
(b) After refinement including second and third cumulants. (c) 
After refinement including second, third, and fourth cumulants. 

difference electron density at the AI(4) site following 
this refinement is shown in Fig. 2(a). Large peaks  are 
located near  the Al(4) site in the ( 1 1 1 )  directions 
indicating a large component  of  the probabili ty 
distribution arising from a third-order term in the 
tempera ture  factor.  

Fig. 2(b) shows the difference density after refine- 
ment including the C 123 parameter .  Although most  of the 
residual density has been accommoda ted  there still 
remains a sharp feature near  the Al(4) site. Inclusion of 
the fourth-order  terms d 1 ~  and d 1122 removes this 
feature, leaving only a slight negative region centered 
on the Al(4) site (Fig. 2c). Very similar maps  are 
obtained using the room- tempera ture  data.  

R e s u l t s  

Solving the high-temperature  equations (8a ) - (8d )  using 
the values of  b 1~, c ~23, d ~l~, and d ~22 given in Table 2 
yields the values of  a,/7, y, and 6 listed in Table 3. Also 
listed in Table 3 are the corresponding values obtained 
by solving the quan tum statistical equations (9), (10) by 
least-squares refinement. Although the potential pa ram-  
eters derived at the two temperatures  are somewhat  
different, they are physically reasonable.  The signs are 
consistent, and the potentials remain positive as 
l u l  --+ o o .  

The negative sign of/7 corresponds  to a softening of  
the potential in the ( 1 1 1 )  direction, towards  the 
nearest-neighbor Al(3) a toms and away  from three 
AI(1) a toms ar ranged about  the ( i  i 1) direction. This is 
consistent with peaks  in the difference density map,  Fig. 
2(a), and opposite to the result of  the calculation 
reported by Caplin & Nicholson (1978) which predicts 
a minimum of the potential in the ( i i i )  direction. 

In Figs. 3(a) and (b) the resulting potentials at both 
temperatures  are compared  with the corresponding 
harmonic  potentials. In Fig. 3(c) the potential at 100 K 
as obtained with the quan tum statistical equation is 

Table 3. OPP parameters obtained from the high- 
temperature (HT) and quantum statistical (QS) 

equations 

a,/7, y, and 6 are given in units of J A -2, J A -3, J A -4, and J A -4 
respectively, all × 102°. 

HT QS 

T= 100K 
a 2.33 (16) 2.36 (16) 
fl -2.98 (59) -3.09 (60) 
7' 0.77 (9) 0.80 (9) 
6 2.26 (52) 2.38 (53) 

T=293 K 
a 4.05 (29) 4.05 (29) 
fl -3-96 (84) -3.97 (84) 
y 1.11 (33) 1-12 (33) 
6 2.26 (78) 2.27 (78) 
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Fig. 3. Plot of the one-particle potential along the ( I  11) direction 
as obtained from the quantum statistical equation. The corre- 
sponding harmonic potential is given as a broken line. (a) 100 K .  
(b) Room temperature. (c) Comparison of QS and HT (broken 
line) results at 100 K. 

compared with the result in the high-temperature limit. 
The difference in the potential is found to be slight for 
OM/T ~_ 0.9 at 100 K. 

The results of a refinement in which the cumulant 
temperature factors at both temperatures are fit with a 
single set of OPP parameters are given in Table 4 along 
with the observed and calculated values of the 
cumulants. The fit is reasonably good with a r.m.s, a/A 
value of ~5. However, a systematic trend is observed, 
with the magnitude of the observed values always being 
less than the calculated values at room temperature and 
greater at 100 K. The high-order terms in the 
temperature factor thus show a lower dependence on 
temperature than predicted by the OPP model. 

The A1-A1 distances in the cage change relatively 
little going from 100 to 293 K. It therefore seems 
unreasonable to attribute the observed behavior of the 
temperature factors to a significant change in the 
potential. The deviation from the usual expression for 
the OPP temperature factor observed here is more 
likely to be due to the unusually large cubic and quartic 
terms. In this case, the expansion of (4) about the 
second-order term is no longer valid (see Coppens, 
1980, for another example). In fact, to produce a 
double-well potential similar to the one reported by 
Caplin & Nicholson (1978) a negative value of a '  is 
required. Unfortunately, the required integrals for the 
calculation of (3) and (4), for large fl, Y, or 6 are not 
easily evaluated. An analysis using numerical in- 
tegration, however, is possible (Stevens & Kontio, 
1982). Alternative forms of the potential which are not 
expansions about the harmonic case (Mair, 1982) may 
also be more successful for highly anharmonic systems. 
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Table 4. OPP parameters from joint refinement on 
cumulants at both temperatures using QS equation 

b II, C 123, d 1111, and d U22 are given in units of/£2,/~3,/k4 and/~4, 
respectively. 
a, fl, y, and J are given in units of J/k -E, J/~-3, j /~-4 and J/k -4 
respectively, all x l0  20. 

Observed Calculated tr 

b~ 3 0.0547 0.0573 0.0094 
C123 0.0097 0.0101 0.0007 293 
dllll --0"0118 --0"0122 0-0003 293 
dl122 0"0024 0"0142 0"0005 293 
b~ o 0.0417 0.0317 0.0020 
C123 0.0045 0.0011 0-0002 100 
d1111 --0.0036 --0-0005 0.0006 100 
dn22 0.0011 0-0001 0.0001 100 
a 3.80 (11) 
fl -3.25 (30) 
y 0.97 (6) 
6 1.33 (30) 
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Abstract 

Two existing intensity formulae of a single Bragg 
reflection which include corrections for the effects of 
extinction and thermal diffuse scattering are discussed 
on the basis of energy-transfer equations for secondary 
extinction. It is shown that one of them, which has been 
recommended by Cooper & Rouse [In Thermal 
Neutron Diffraction (1970), edited by B. T. M. Willis, 
Oxford Univ. Press], is not valid. 

1. Introduction 

In the accurate analysis of density distribution by 
means of X-ray and neutron diffraction from single 
crystals, the most remarkable progress made in the last 
decade comes from the fact that the observed inte- 
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grated intensities can now be corrected for extinction 
and thermal diffuse scattering. In the actual analysis, at 
present, the integrated Bragg intensity is represented by 
two slightly different formulae in which corrections for 
the effects of absorption, polarization, extinction and 
thermal diffuse scattering are included. However, there 
has been no discussion about the difference between 
these two formulae, except for a comment given by 
Cooper & Rouse (1970). Consequently the choice 
seems to have depended upon the convenience to the 
analyst. The purpose of this paper is to reconsider what 
sort of scattering process is really represented by each 
formula and to recommend that one of them be used 
for the refinement as representing more plausibly the 
scattering process. 

2. Expressions for the integrated Bragg intensity 

In corrections for the effect of extinction as well as 
thermal diffuse scattering to the observed integrated 
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